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Abstract – Current engineering practice in the analysis 
and design of large-scale multi-disciplinary control 
systems is typified by some form of decomposition—
whether functional or physical or discipline-based—that 
enables multiple teams to work in parallel and in relative 
isolation. Too often, the resulting system after integration 
is an awkward marriage of different control and data 
mechanisms with poor end-to-end accountability. System of 
systems engineering, which faces this problem on a large 
scale, cries out for a unifying framework to guide analysis, 
design, and operation. This paper describes such a 
framework for semi-autonomous control systems that 
guides analysis and modeling, shapes control system 
software design, and directly specifies operational intent. 
This paper illustrates the key concepts in the context of a 
large-scale, concurrent, globally distributed system of 
systems: NASA’s proposed array-based Deep Space 
Network. 

Keywords: Systems modeling, control architecture, 
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1 Introduction 
 The size and complexity of many systems being built 
for government, industry, and the military have reached a 
threshold where customary methods of analysis, design, 
implementation, and operation are no longer sufficiently 
reliable. Many of these large systems are properly 
described as “systems of systems” in that they are 
composed of many systems—often built by multiple 
suppliers—that must operate in a coordinated manner. The 
challenge of coordinated control almost always falls to 
software. Unfortunately, there is a fundamental gap 
between the requirements on software, as specified by 
systems engineers, and the implementation of those 
requirements by software engineers. Software engineers 
must perform the translation of requirements into software 
design and into code, trying to capture the systems 
engineer’s understanding of system behavior, which is not 
always explicitly specified. This gap can lead to serious 
flaws in the implemented system, some of which may 
manifest at the most inopportune times.  

 The twin problems of errors of omission and errors of 
interpretation are exacerbated in a system of systems 
simply because the opportunities for error grow with the 
number of system-to-system interactions that must be 
specified by systems engineers. They also grow with the 
number of different ‘mindsets’ about control mechanisms 
that different teams bring to the table, often based on 
reusable or legacy software. 

 Another challenge in the validation of any complex 
software system is that much of what transpires in software 
design and development is opaque to systems engineers. It 
is nigh impossible for a systems engineer to obtain a 
description of the software design that is simultaneously 
faithful to the software as built and expressed in terms 
directly related to the requirements. Too often, software 
designs presented at reviews are box-and-line diagrams that 
amount to an appealing fiction; they present an idealized 
design that fails to reveal important interactions built into 
the software. 

 This paper describes a systems engineering 
methodology called State Analysis [2], intended for 
application to autonomous and semi-autonomous control 
systems. State Analysis asserts four basic principles: 

 Control subsumes all aspects of system operation. It 
can be understood and exercised intelligently only 
through models of the system under control, so a clear 
distinction must be made between the control system 
and the system under control. 

 Models of the system under control must be explicitly 
identified and used in a way that assures consensus 
among systems engineers. 

 Models of the system under control must be expressed 
in terms of physical state variables. Everything we 
need to know and everything we need to do can be 
expressed in terms of the state of the system under 
control. 

 As complexity grows, the line between specifying 
behavior and designing behavior is blurring. The 
software design must reflect the systems engineer’s 



understanding, so the manner in which models inform 
software design and operation should be direct, 
requiring minimal translation. 

 As Figure 1 depicts, this methodology addresses the 
triad of system analysis, software design, and operational 
control. These three aspects of a system must be mutually 
consistent to achieve a reliable and understandable end 
product. The unifying principles for these three aspects 
form the foundation of a model-based and state variable-
based control architecture for systems of systems. This 
paper illustrates  the application of State Analysis and the 
control architecture in the context of globally distributed, 
concurrent control system. 

 
2 The Deep Space Array Network 
 This paper examines NASA’s proposed Deep Space 
Array Network (DSAN) as a case study in system of 
systems engineering. DSAN is designed to be the next-
generation network of Earth-based antennas that provide 
communication services to NASA’s deep space missions of 
exploration [4]. According to current plans, the network 
will contain 1200 12-meter receive antennas, divided 
equally among three longitudes (“regions”) in order to 
maintain tracking as the Earth rotates. As the name implies, 
DSAN employs sophisticated digital signal processing to 
combine signals from an array of antennas in order to 
achieve the effective aperture of a much larger antenna. 
With 400 antennas at each of the three regions, numerous 
target spacecraft can be tracked concurrently by allocating 
groups of antennas to each target and routing their signals 
appropriately through the signal processing system. 

 DSAN is a system of systems in that it is composed of 
multiple complex systems, is geographically distributed, 
and must be coordinated and controlled as a single system. 
Kotov’s definition [1] is particularly apt: “Systems of 
systems are large scale concurrent and distributed systems 
that are comprised of complex systems.” DSAN is 
comprised of several complex systems including: the 
receive array; transmit array; large transmit/receive array; 
telemetry, ranging, and command processing; very long 
baseline interferometry processing; frequency and timing; 
and monitor & control. This paper focuses on monitoring & 
control for the receive array. 

 There are three levels of automated monitoring & 
control within DSAN. At the lowest level, closest to the 
hardware, hard real-time control loops read sensors and 
command actuators to do things such as pointing the 
antennas, configuring the signal flow and signal processing, 
and constantly monitoring for anomalies. At the next level 
up—the regional level—the job is to allocate and manage 
all the resources, including the 400 antennas of the receive 
array at each region, in the service of customer requests for 
spacecraft tracking. The regional level must respond to 
faults in real time, such as quickly replacing a failed 
antenna in an active array. The final level of monitoring & 
control is at DSAN Central. This top level assigns work to 
each of the three regions, based in part on what regions 
have a spacecraft’s signal “in view” at the time its signal is 
reaching Earth. As with regional control, central control 
must react in real time to anomalies reported by each 
region. For example, DSAN Central could direct the 
Australian region to start tracking a spacecraft earlier than 
expected if a failure occurs in the California region. 

3 State Analysis 
 State Analysis is a systems engineering process for the 
problem domain of autonomous and semi-autonomous 
control systems. It is a comprehensive process in that it 
addresses analysis of the system to be controlled, design of 
the control system, and operation of the control system. 
Compared to more conventional systems engineering 
processes, it demands more up-front analysis and it 
represents its results in a more structured form. Its main 
benefit is more reliable systems due to fewer errors of 
omission, fewer errors of translation into software, and 
more easily understood operational controls. It also enables 
more accurate cost estimation because there is a much more 
direct mapping from analysis artifacts to units of work. A 
detailed presentation of the State Analysis methodology is 
found in reference [2]. In this paper, we introduce the 
fundamental architectural concepts of the approach, and 
describe its application to the DSAN system of systems. 

It’s important to note that State Analysis is not primarily 
about statecharts, though they may be employed to model 
behavior of discrete-event finite-state portions of a system 
under control. Rather, the word “state” in State Analysis is 
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Figure 1. State Analysis provides a unified approach 
to system analysis, control system software design,  
and system operation. 



meant to elevate the role of physical state variables in 
analysis and modeling and design to be first-class 
architectural citizens. This emphasis on physical state 
variables pays big dividends not only in relating 
requirements and operations directly to the system under 
control but also in shaping control system design. Physical 
state variables can be discrete-valued or continuous-valued 
and can include any physical quantity. 

3.1 Architectural Concepts 
 To understand State Analysis, it is important to 
understand a few architectural features that shape it, as 
depicted in Figure 2. First, there is a clear distinction 
between the control system and the system under control 
because control can only be understood and exercised 
intelligently through models of the system under control. 
Second, state variables of the system under control are 
explicit since it is the values of those state variables that the 
control system is designed to control. Third, models of how 
the system under control behaves are documented explicitly 
because they are needed by the control system for 
execution (estimating and controlling state) and higher-
level planning (e.g. resource management). Fourth, state 
estimation is separate from state control because separation 
promotes objective assessment of system state and ensures 
consistent use of state across the control system. Fifth, 
hardware adapters provide the sole interface between the 
control system and the system under control, with all 
interactions in the form of commands to and measurements 

from the system under control. Sixth, the architecture 
emphasizes goal-directed closed-loop operation because 
goals, as constraints on the values of state variables over 
time intervals, directly express operational intent. Finally, 
the architecture provides  a straightforward mapping into 
software because the aforementioned architectural concepts 
(state variables, models, estimators, controller, 
measurements, commands, goals) are represented directly 
in software. 

3.2 Modeling of the System Under Control 
 As a systems engineering process, State Analysis is a 
gradual discovery process that is incremental in nature, and 
each increment can expand the analysis in terms of scope 
or detail, or both. The process is all about understanding 
and modeling the system under control since the control 
system needs such models. The first steps of the process 
are: (1) identify the state variables of the system under 
control that must be monitored and/or controlled; (2) 
identify the direct effects of one state variable on another 
(state-to-state effects); (3) identify the measurements that 
provide evidence about the values of state variables (state-
to-measurement effects); and (4) identify the commands 
that affect the state variables (command-to-state effects). 
All of these state variables, measurements, commands, and 
influences are captured in a “physics model”, so named 
because it captures the physics of the system under control. 

 Figure 3 provides an overview of a portion of the 
physics model centered around a state variable for the 
operational mode and health of an antenna mechanical 
system. The incoming arrows to that state variable show 
that its value is affected by facility power (another state 
variable) and mechanical mode commands. The outgoing 
arrows show that the value of this state variable affects the 
received signal (another state variable) as well as four 
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Figure 3. This view of the physics model shows what 
affects what among the state variables, commands, and 
measurements of the antenna mechanical system. 
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measurements (antenna pointing, motor current, 
mechanical operating mode, and antenna mechanical 
power).  

 Figure 4 shows a statechart (a behavioral model) that 
expresses behaviors of the system under control related to 
an antenna’s operating mode and health. Specifically, it 
shows how the power state and mode commands affect the 
antenna operational mode and how different measurements 
provide evidence about the value of that state variable. 
Although this example employs a statechart, in principle a 
model can be described in a variety of ways including 
equations, tables, pseudo-code, and text. The key 
requirement is that the model must unambiguously specify 
behavior, i.e. how the system under control works. 

 As is always true in systems engineering, the level of 
detail that a system engineer decides to capture in a physics 
model should be driven by need. The model should make 
explicit all the effects and behaviors of the system under 

control that must be known to properly control it. Effects 
that are present but considered insignificant should be so 
noted so that such assumptions are recorded and 
reviewable. Importantly, the graphical representation of a 
physics model shold be easy to review with domain experts 
and other systems engineers. Graphical representations, as 
shown in Figures 3 and 4, are particularly appropriate. 

3.3 Control System Software Design 
 An important aspect of the architectural concepts 
outlined in section 3.1 is that the same concepts of states 
and models that shape the State Analysis process also shape 
the reference architecture for the software. The right-hand 
side of Figure 5 shows a UML collaboration diagram that 
mirrors the architectural concepts depicted in Figure 2. 
Figure 5 presents a control loop pattern for the antenna 
mechanical op mode and health. In this pattern an estimator 
repeatedly reads measurements and commands  from the 
system under control, interprets them with respect to 
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Figure 5. The physics model (shown on the left) directly informs the software design (shown on the right).  
The physics model elements (state variables, measurements, and commands) and the models behind them 
(state, measurement, and command effects models) all map into the software design. 
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measurement models and command models (part of the 
physics model), and updates the current estimated state. A 
controller repeatedly compares estimated state to desired 
state (represented in a control goal), and issues commands, 
as appropriate, to the system under control. The decision of 
what command to issue, if any, depends on the command 
effects model (also part of the physics model). 

 As Figure 5 shows, there is a direct mapping between 
elements in the physics model and elements in the software 
design. For every state variable in the physics model there 
is a state variable component in the collaboration diagram. 
For every state variable there is exactly one estimator, and 
its job is to interpret all evidence about the state (the value) 
of the state variable. The specific kinds of evidence are all 
identified in the physics model. For example, every 
measurement in the physics model that is affected by the 
physical state known as Antenna Mechanical OpMode & 
Health becomes input to its estimator component. 
Similarly, commands and physical states that affect the 
state of the state variable also become inputs to the 
estimator. Although not shown in this example, an 
estimator may also use the value of an affected state 
variables as evidence. In all cases, the estimator uses 
information in the physics model (state-to-state effects, 
state-to-measurement effects, and command-to-state 
effects) to properly interpret all the evidence.  

 A similar mapping exists for controllers. For every 
controllable state variable in the physics model there is 
exactly one controller, and its job is to issue commands, as 
needed, to achieve a desired state, as expressed in a control 
goal. A goal is defined as a constraint on the values of a 
state variable over a time interval, so a controller’s job is to 
try to keep the constraint satisfied by influencing the 
physical state of the system under control. In general, a 
controller may issue more than one kind of command to 
more than one kind of subsystem, but only if those 
commands affect the controlled state variable, as identified 
in the physics model. Estimators take into account the 

predict effects of an issued command by getting a copy of 
the issued command, plus its timestamp, from the system 
under control. 

 The key point here is that the direct mapping of 
analysis artifacts to software design eliminates many 
opportunities for error. Compared to “shall” statements, 
these analysis artifacts are highly structured and 
unambiguous. Using framework software elements that 
mirror the analysis artifacts, software engineers make far 
fewer errors of interpretation, and the system as built bears 
a direct resemblance to the analysis artifacts. 

3.4 Goal Elaborations for Operations 
 The preceding section showed how a portion of a 
physics model informed the software design for a single 
control loop. Each individual control loop is controlled by a 
pair of goals: a control goal for the controller and a 
knowledge goal for the estimator. In simple terms, a 
control goal specifies a desired state (or desired state 
history) and a knowledge goal specifies a required quality 
of knowledge about estimated states. For example, in the 
control loop for antenna mechanical operating mode and 
health, a control goal might specify that the antenna is 
healthy and that the antenna system is tracking and on-
point. A corresponding knowledge goal might specify that 
antenna operating mode and health is known with high 
confidence. Goals provide an excellent basis for operations 
because they directly specify intent (i.e. “what” rather than 
“how”) and because they are checkable during operation (a 
goal is said to “fail” if its constraint is violated). 

 In any real system there are many state variables, 
often numbering in the thousands, and so there is a need to 
coordinate hundreds or thousands of control loops. In our 
architecture such coordination is accomplished via a goal 
network. A goal network typically begins with the 
specification of a few high-level goals and then expands 
through a process of goal elaboration and scheduling. Goal 

Figure 6. Goal elaborations are the building blocks for operation of the control system. A parent goal specifies a 
constraint on state to be satisfied during a time interval, denoted by starting and ending time-points. The 
elaboration specifies required subgoals, as directly informed by state-to-state effects in the physics model. 
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elaboration is the process of specifying the child goals 
(subgoals) needed to achieve a particular parent goal. For 
example, for an antenna mechanical system to be tracking 
and on-point (a parent goal), it must have power and its 
operational mode must be known (two child goals). 

 Interestingly, such goal elaborations are informed by 
the same physics model described previously. These 
elaborations are constructed by applying four simple rules 
to the model: (1) a goal on a state may elaborate to a 
control subgoal on an affecting state; (2) a control goal on a 
state elaborates to a knowledge goal on the same state; (3) a 
knowledge goal on a state may elaborate to knowledge 
goals on its affecting and affected states; and (4) a 
“maintenance” goal on a state may elaborate to a 
“transition” goal on the same state, with an ending time-
point coincident with the starting time-point of the 
maintenance goal. Figure 6 depicts the results of applying 
these rules to a parent goal that the antenna mechanical op 
mode and health state variable be in the state of health, 
tracking, and on-point. 

 It should be noted that alternative ways of 
accomplishing a goal are specified via multiple alternative 
goal elaborations, called tactics. Thus, should any of the 
supporting goals in an elaboration fail, it becomes possible 
to re-elaborate with an alternate tactic to accomplish the 
same objective. Context-specific elaboration can be 
enabled by conditioning alternative elaboration tactics on 
different state constraints. 

There is more to the story of goal-based operations that is 
beyond the scope of this paper, including additional detail 
on the elaboration process (see [2]) and a thorough 
explanation of scheduling and executing goal networks (see 
[2,5]). The basic idea is that one or a few high-level goals 
are specified by operators and then a process of goal 
elaboration and scheduling produce a schedule of 
operations. In the case of the Deep Space Array Network, a 
high-level goal in the form of a mission service request 
would start such a process. Such a goal might specify that 
the mission customer wants to receive data frames from a 
downlink pass from spacecraft x. The elaboration of that 
goal would, among other things, use knowledge of the 
spacecraft trajectory, modulation format, data rate, and 
radiated power to determine how many antennas need to be 
arrayed together to receive the data with the level of 
certainty specified by the customer.  

4 Conclusions 
 This paper has shown how the architectural concepts 
of state variables, models, and goals provide a unified view 
of control that shapes the trinity of system analysis, 
software design, and operational control. Analysis is 
always about the system under control, not the control 
system, and it begins with a discovery process for state 
variables, commands, and measurements, plus the models 

of behavior that relate them. The software design is always 
about the control system, whose job is to monitor and 
control specific state variables in the system under control. 
To do this it depends on knowledge of how the system 
under control works — exactly the same knowledge of 
behavior captured in the models. Estimators, controllers, 
and planning & execution in the software design all use the 
models. Finally, operational control via goal networks is 
designed in accord with the physics model, for both 
nominal operations and fault responses. Specifically, goal 
elaborations and their alternate tactics are employed 
directly during system operation to effect coordinated 
control of the whole system. 

 The important message in this paper is that complex 
systems can be built more reliably if a unified approach is 
followed. By adopting the State Analysis approach, 
elements of the physics model map directly onto software 
design, and state-to-state effects directly shape the goal 
elaborations. The system as built is no longer opaque to 
systems engineers because it now represents the results of 
their analysis in a direct, inspectable way. 

 As is the case in the Deep Space Array Network, it’s 
not necessary that all of the software-based control in a 
system of systems be designed and built in the manner 
described here. Systems or subsystems implemented using 
a different design may be viewed as part of the system 
under control and their “black box” behaviors would 
therefore be modeled during analysis. For more 
information about State Analysis and its underlying 
architecture see [2,3,5]. 
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